TORAY

Toray Reverse Osmosis Membrane Elements

New Century of Water Created by Toray Reverse Osmosis Elements

Efficient use of water resources is an important challenge in the 21st century. A global shortage of water resources is expected. Consideration of the earth's environment has become more important in recent years, giving rise to a growing demand for reverse osmosis membranes.

Demonstrating excellent quality and high performance, Toray RO elements are functional membrane elements that were developed through the polymer engineering of Toray, the first Japanese manufacturer of reverse osmosis membranes.

Toray RO element technology grew from Toray's abundant business experience. This experience has generated a broad product line spanning many fields of application: ultra pure water production for semiconductor and other industries, desalination of seawater, waste water treatment, and recovery of valuable process materials in the food processing industry.

The experience, technology and expertise of Toray are being actively applied to all water-related needs around the world through the global operation of overseas affiliates and sales agents.

Features of Reverse Osmosis

1. Removal of dissolved salts

Reverse osmosis can stably and effectively remove dissolved salts, dissolved organic substances (trihalomethane, its precursors, agricultural chemicals, etc.), and microfine particles (living and dead bacteria and many other microfine particles) from water.

Thus it is ideal for a wide array of applications ranging from production of ultra pure water to desalination of seawater.

2. Energy-saving separation technique

Since reverse osmosis does not require the evaporation of water, it consumes less energy than separation processes that use evaporation.

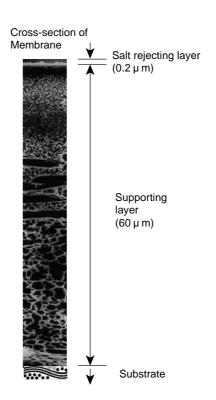
3. Utilizable as a concentration and recovery method

Reverse osmosis does not need heating, so it can concentrate and recover valuable process materials dissolved in a solution without degradation which might otherwise occur with other methods.

4. Compact configuration

Modules can be arranged in a three-dimensional configuration to provide excellent space efficiency, so the space needed for installation can be minimized.

5. Simple operation and control


Reverse osmosis systems are simple and easy to operate and maintain.

Reliable Technology for Water Production

Cross-Linked Polyamide Composite Membrane

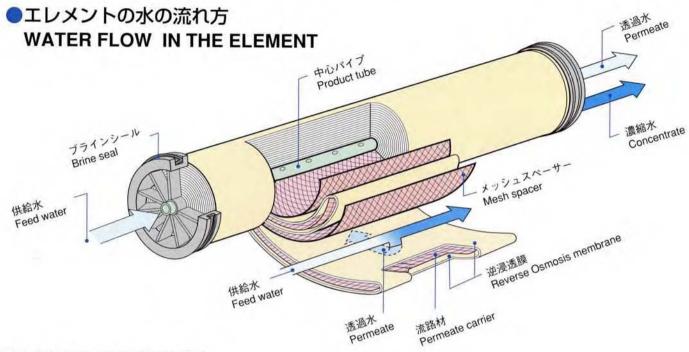
Electric power costs can be reduced to a great extent since this membrane operates at low pressures.

The mambrane has excellent properties for removing dissolved salts, TOC, and silica, oemonstrating superb performance in the production of ultra pure water and the desalination of seawater.

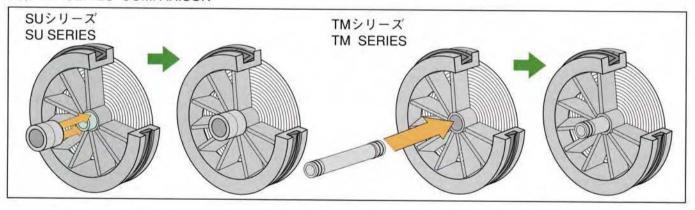
Cross-Linked Polyamide Composite

Membrane Element

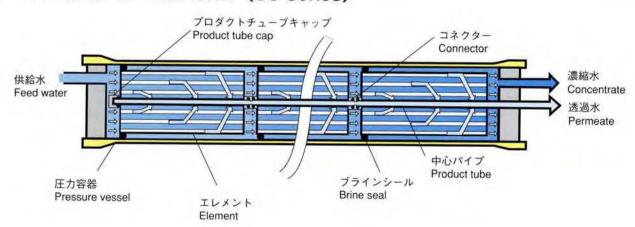
Spiral wound reverse osmosis element.


Little elution occurs from the materials that form the element. This allows the specific resistance and TOC rise time to be reduced in ultra pure water.

Rich line of products for a wide range of water treatment applications.



COMEMBRA の構造とシステム例


Structure and Example of Module Unit

SU/TMシリーズ端板部分比較図 SU/TM SERIES COMPARISON

●モジュール構造図(SU シリーズ) STRUCTURE OF MODULE(SU Series)

Applications

Water treatment for various usages of water. Toray RO element produces the right water for a diverse assortment of applications.

Production of ultrapure water

Rinse water for semiconductor and liquid crystal industries

Production of pure water

Boiler water and process water for various industries

River water

Utilization of permeate

Production of drinking water

For dry regions and countermeasures against disaster and water shortage (sea water and brackish water desalination)

Seawater

City water

Underground water

Refining and softening of water Removal of water hardness and silica; removal of trihalomethane, its precursors. and agricultural chemicals

Recycling and closed systems for various waste waters

Recycling of water in the semiconductor and liquid crystal industries Recycling of industrial waste water, sewerage and office waste water

Industrial waste water

Utilization of concentrate

Concentration and recovery of valuable process materials

Concentration and recovery of foodstuffs and chemicals

Membranes and elements are manufactured and undertaken the quality assurance at Toray Ehime Plamt, which has

Quality Management System ISO 9001

certification, registration number; JQA-

0683, and Environmental Management System ISO 14001 certification, registra-

tion number; JQA-EM0440.

Toray accepts no responsibility for results obtained by the application of this information or the safety or suitability of products, either alone or in combination with other products.

obtained

Tel: +852-2196-7000 Fax: +852-2196-7138

Tel: +41-61-415-87-10 Fax: +41-61-415-87-20

Tel: +971-4-8815339 Fax: +971-4-8815620

Grabenackerstrasse 8 CH-4142 Münchenstein 1, Switzerland

Jebel Ali Free Zone LOB09 / 107 POB17978, Dubai, UAE

Ropur AG

http://www.ropur.com/

Ropur Middle East

Toray SU-series & SC-series Reverse Osmosis Element Product List

							Cellose																	_												Polyamide Bra		_	Membrane
					Medium	Brackish water Industrial water	Cellose Acetate		Standard	Nano Filtration	Ultra low		Low		Standard	Ultra Pure Water			Low	Standard S	Lot water conitize			High	Seawater			Low							Standard	Brackish Water Industrial Water	Pressure	Main Application	rane
00-0101	SC-4101	SC-2101	SC-6201X	SC-4201	SC-2201		30-010	SU-620F	SU-620	-	SUL-H20P	SUL-G10P	SUL-G20P	SU-710P	SU-720P	001-010	21010	SUL-G20FTS	SUL-G20TS	SU-720TS	SU-810	SU-820L	SU-820FA	SU-820		SUL-G10	SUL-G20F	SUL-G20	SU-710R	SU-710L	SU-720R	00-7500	SU-720L	SU-720F	SU-720	dustrial Water			Model
FOR SMall Systems	For small systems	For small systems	Highest rejection and chlorine resistance	High rejection and chlorine resistance	High flow and chlorine resistance	Waste water	FOI SITAL SYSTEMS	For small systems	Basic NF element	-	Low elution, easy to rinse and energy saving	For small systems	Low elution, easy to rinse and energy saving	For small systems	Low elution and easy to rinse	FOI SIIIAII SYSTEIIIS	rejection and energy saving		High rejection and energy saving	High rejection	For small systems	High flow	High membrane area and high rejection	High rejection		For small systems	High membrane area,	High rejection and energy saving	For small systems	For small systems	Highest rejection	membrane area	High flow	High membrane area	High rejection				Description
4	4	4	8	8	8		1	_ α	- ∞		8	4	œ	4	8	4) د	ω (ω (8	4	8	8	8		4	8	8	4	4 4	. ∞	8	00	8	8		inch	Diameter	S
4	40	40	40	40	40		5	40	40		40	40	40	40	40	4	5	40	40	40	40	40	40	40		40	40	40	40	40	40	40	40	40	40		inch	Length	Size
98	97	95	98	97	95		5	ח ט	55	-						99.0	00 0	99 5	99.5	99.4	99.75	99.7	99.75	99.75		99.5	99.5	99.5	99.7	99.4	99.7	99	99	99.4	99.4		%	Salt Rejection	Perl
	6.8 (1,800)		20.5 (5,400)	27.2 (7,200)	35.2 (9,300)		4.3 (1,200)	22 (5,800)	1 _		27 (7,100)	7.5 (2,000)	32 (8,500)	8 (2,100)		3 (1,300)		_	_ _	26 (6.900)	4 (1,100)	_	19 (5,000)	16 (4,200)	١.	6.5 (1,700)	37 (9,800)	30 (7,900)	_	5.5 (1,500)	19 (5,000)		22 (5,800)	_	26 (6,900)		m3/d (gpd)	Product Flow Rate	Performance
3.0 (440)	3.0 (440)	3.0 (440)	3.0 (440)	3.0 (440)	3.0 (440)		0.33 (30)	0.35 (50)	0.35 (50)	-	0.5 (70)	0.75 (110)	0.75 (110)	0.75 (110)	0.75 (110)	0.73(110)	0.75 (110)	0.75 (110)	0.75 (110)	1.5 (220)	5.5 (800)	5.5 (800)	5.5 (800)	5.5 (800)		0.75 (110)	0.75 (110)	0.75 (110)	1.5 (220)	1.0 (150)	1.5 (220)	1.0 (150)	1.0 (150)	1.5 (220)	1.5 (220)		MPa (psi)	Pressure	
1,500	1,500	1,500	1,500	1,500	1,500		300	500	500		Pure water	Pure water	Pure water	Pure water	Pure water	300	E00	500	500	1.500	Sea water 3.5%	Sea water 3.5%	Sea water 3.5%	Sea water 3.5%		500	500	500	1,500	1,500	1,500	1,500	1,500	1,500	1,500		mg/l NaCl	Concentration	
22 (//)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)		23 (11)	25 (77)	25 (77)		25 (77)	25 (77)	25 (77)	25 (77)	25 (77)	23 (77)	DE (77)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)		25 (77)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)	25 (77)		°C (°F)	Temperature	Test Conditions
σ	0	6	6	6	6		0.0	ກ ຫ	6.5		6.5	6.5	6.5	6.5	6.5	0.0	D 0	D !	6.5	6.5	6.5	6.5	6.5	6.5		6.5	6.5	6.5	6.5	6.55 5	6.5	6.5	6.5	6.5	6.5			рH	
10 (2.6)	10 (2.6)	10 (2.6)	80 (21)	80 (21)	80 (21)		20 (3.3)	20 (21)	80 (21)		12 (3.2)	3 (0.8)	12 (3.2)	3 (0.8)	12 (3.2)	20 (3.3)	30 (E 3)	80 (21)	80 (21)	80 (21)	20 (5.3)	80 (21)	80 (21)	80 (21)		20 (5.3)	80 (21)	80 (21)	20 (5.3)	20 (5.3)	80 (21)	80 (21)	80 (21)	80 (21)	80 (21)		I/min (gpm)	Brine Flow	

Toray TM-series Reverse Osmosis Element Product List

Membrane						Performance		Test Conditions	itions		
Application											
Pr	Pressure	Rejection	Diameter	Model	Salt Rejection	Product Flow Rate	Operating Pressure	Feed Concentration	Temperature	PH	Recovery
	Range	Range									
			inch		%	gpd (m3/d)	psi (MPa)	mg/l NaCl	。 (° (°		
Cross Linked Aromatic Polyamide	natic Pol	yamide		-							
Brackish W	later and	Brackish Water and Industrial Water	ater								
Sta	Standard	High	8	TM720 -370	99.7	9,500 (36)	225 (1.55)	2,000	77 (25)	7	
		,		-400	99.7	10,200 (39)	225 (1.55)	2,000	77 (25)	7	
				-430	99.7	11,000 (42)	225 (1.55)	2,000	77 (25)	7	
			4	TM710	99.7	2,200 (8.3)	225 (1.55)	2,000	77 (25)	7	
Low	>	Medium	8	TMG20 -400	99.5	10,200 (39)	110 (0.76)	500	77 (25)	7	
				-430	99.5	11,000 (42)	110 (0.76)	500	77 (25)	7	
			4	TMG10	99.5	2,000 (7.6)	110 (0.76)	500	77 (25)	7	
Ult	UltraLow	Medium	8	TMH20 -370	99.4	12,000 (45)	100 (0.69)	500	77 (25)	7	
				-400	99.4	13,000 (49)	100 (0.69)	500	77 (25)	7	
				-430	99.4	14,000 (53)	100 (0.69)	500	77 (25)	7	
			4	TMH10	99.4	2,800 (10.5)	100 (0.69)	500	77 (25)	7	
Low Fouling					-			-			
Sta	Standard	High	00	TML20 -370	99.7	9,500 (36)	225 (1.55)	2,000	77 (25)	7	
				-400	99.7	10,200 (39)	225 (1.55)	2,000	77 (25)	7	
Seawater											
WS	<	High	8	TM820 -370	99.75	6,000 (23)	800 (5.52)	32,000	77 (25)	7	
Sta	Standard	,			99.75	6,500 (25)	800 (5.52)	32,000	77 (25)	7	
			4	TM810	99.75	1,200 (4.5)	800 (5.52)	32,000	77 (25)	7	
				TM810L	99.70	1,600 (6.0)	800 (5.52)	32,000	77 (25)	7	
NS	SW High	High	8	TM820H -370	99.75	5,600 (21)	800 (5.52)	32,000	77 (25)	7	